Lecture Outline

Formal Language Theory

Michael J. Watts

http://mike.watts.net.nz

Languages

- Alphabet
 - Words
 - Letters
 - Indivisible
- Strings
 - Sequences of alphabet elements
- Sentence
 - Well-formed string in a language
 - Grammatically correct

• Languages

- Grammar
- Regular Sets
- Regular Expressions
- Parsing

Languages

- Languages
 - Possible strings
- Natural vs machine
- Defined by a grammar
- There is a hierarchy of languages

Languages

- · Chomsky hierarchy
 - Unrestricted grammars
 - Context-sensitive grammars
 - Context-free grammars
 - Regular grammars
- Most programming languages are context-free grammars

Grammar

- Formal definition of a language
- Fit within Chomsky's hierarchy
- Describes syntax
- Keywords
 - For computer languages
- Specified as production rules
 - A -> B

Regular Set

- Generated from the elements of the alphabet
- Uses three operations
 - Union
 - Concatenation
 - Kleene star
- A regular set can be described with a regular expression

Parsing

- Breaking a string into parts
 - Tokens
- · Applies to
 - Searching
 - Compilation
- Uses finite state machines
 - Matches tokens

Summary

- Languages have specific components
 - Common across natural and machine languages
- Grammars define languages
 - Structure / content
- Regular expressions define sets of strings
 - Regular sets
- Parsing is breaking strings up into token

Regular Expressions

- · Specify sets of strings
- Regular expressions are used extensively in computing
 - Searching databases
 - File systems
 - String parsing
 - Structuring tokens in programming languages

Parsing

- Groups tokens into grammatical groups
 - Hierarchical
- · Checks that expressions match grammar
- · Application of regular expressions
- Parsers can be generated from grammars
 - YACC/Bison