
Computer Theory

Michael J. Watts
 

http://mike.watts.net.nz

Lecture Outline

● Turing machines

● Computability

● Representation issues

Turing Machines

● Simple theoretical model

– computability

● Basis of modern computers

● Finite state machines

● Equivalent to a digital computer

● Deal with an infinitely long tape

● Tape has a finite number of non-blank squares

Turing Machines

● Each square has a symbol from a finite alphabet

– A datum

● Has a read-write head

● Reads a symbol

● Symbol + current state

– Writes a new symbol

– Moves left or right on the tape

Turing Machines

● Continues until it reaches an unknown condition

● All computer languages and architectures are 
equivalent to Turing machines

● Universal Turing machine

– Generalisation

– Reads instructions off of tape

Turing Machines

● Nondeterministic Turing machine

– Adds a write-only head

– Writes a guess at the solution

– Based on internal “rule”



Computability

● “A function is computable if can be computed 
with a Turing machine”

● http://www.ams.org/new-in-math/cover/turing.html

● Valid input -> algorithm -> correct output

● Some problems are not computable

– Halting problem

Computability

● Polynomial time

● NP-Complete

– Non-deterministic polynomial time

– NP-Hard

● Many optimisation problems are NP-complete or 
NP-hard

● Hamilton path

– Travelling salesman

Computability

● Exponential time

– Number of steps is an exponential function of 
complexity

● Encryption breaking

● Factorial complexity

– Don't bother

Representation

● Numbers in computers are represented in binary

– Base two numbers

– Integers / floating point

● Floating point

– Single / double precision

● Problems

– Recurring digits

– Accuracy

Summary

● Turing machines are the basis of computer theory

● Any function that can be computed by a Turing 
machine in computable

● Some problems are not computable

● Some problems are infeasible

● Problems with representation of numbers in 
computers


