* Selection of an appropriate data structure is an

Data Structures

Michael J. Watts

http://mike.watts.net.nz

Introduction

important part of programming
- Efficiency
- Flexibility

* Choice depends on problem

- Rate of new data acquisition / insertion
- Type of data being stored
- Desired method of data access

Matrices

Array of arrays
Basis of MATLAB
One dimensional matrices are arrays
- Row / column vectors
Can be > 2D
Accessed via row / column indices
Same problems with searching as arrays

Makes certain mathematical operations easier

Lecture Outline

Arrays
Matrices
Structures
Stacks
Queues

Trees

Arrays

Basic data structure for most programming
languages

Collection of data values
Usually a single data type
- ¢f MATLAB cell arrays
Contents accessed by index numbers
Problems with searching for specific elements

Good for fixed numbers of items

Structures

Collection of named pieces of data
Multiple data types within a structure
Elements within a structure are called fields
Contents accessed by field name

Good for grouping related items together



Stacks

* Like a stack of plates
* QOldest items are at the bottom
* Newest items are at the top

» New items are 'pushed' onto the top of the stack

* Retrieved items are 'popped' off of the top of the

stack

* First in, last out data structure

Queues

 Like a queue at the supermarket

* Sequential data structure

* Oldest items are at the front

» Newest items are at the back

* Elements are 'enqueued' at the end
* Elements are 'dequeued' at the front
« First in, first out data structure

Trees

» Way of storing data values in order
» Two dimensional structure
* Collection of nodes and edges

- Nodes are data items

- Edges connect nodes

* Position of an item in the structure depends on
the value of a key

* Many types of tree in existence

Stacks

* Often used to provide temporary storage of data
values

» Can't be searched

- Have to pop each value out to find the one you're
looking for

 Simple to implement

* Can be used for evaluating expressions

Queues

« Used to control access to finite resources
- Petrol pumps, checkouts, printers

* Sequential access only

* Unordered

* Problems with searching

Trees

» Navigate by the vales of the nodes
* Much faster than sequential search

- Don't need to examine every item

- Adding a level to the tree adds just one more
comparison

* A level can have many items

* Search speed scales as to the log of N

- N is the number of items in the tree



B-Trees

* Binary trees
» Each node has zero or more subtrees
- Left and right

- Node without a subtree is a leaf
- First node is the root

» Values in left subtree are smaller

* Values in right subtree are greater

AVL Trees

» Adel'son-Vel'skii and Landis trees
* Balanced binary trees

* Height between left and right subtree differ by at
most one

- Height measured between bottom-most nodes
* Height difference maintained by rotations
- Single / double rotate left / right

Summary

* Selection of a data structure is problem dependent

* Arrays and structures are built into most
programming languages

» Stacks are often used for temporary storage
* Queues control access to a resource

* Trees are efficient for retrieval

* B-Trees can degenerate

* AVL trees are balanced

B-Trees

* Allow for efficient searches
- Search for value of key
 Often used in indexing
- Databases, file systems
* Can degenerate

- Sequential values
- Becomes a list

* Inefficient

AVL Trees

* Don't become degenerate
* Always efficient searching

- Close to the theoretical maximum
 Rotations can be expensive

- Frequent insertions / deletions

* Other optimisations for in-order iterations



