
Data Structures

Michael J. Watts
 

http://mike.watts.net.nz

Lecture Outline

● Arrays

● Matrices

● Structures

● Stacks

● Queues

● Trees

Introduction

● Selection of an appropriate data structure is an 
important part of programming

– Efficiency

– Flexibility

● Choice depends on problem

– Rate of new data acquisition / insertion

– Type of data being stored

– Desired method of data access

Arrays

● Basic data structure for most programming 
languages

● Collection of data values

● Usually a single data type

– cf MATLAB cell arrays

● Contents accessed by index numbers

● Problems with searching for specific elements

● Good for fixed numbers of items

Matrices

● Array of arrays

● Basis of MATLAB

● One dimensional matrices are arrays

– Row / column vectors

● Can be > 2D

● Accessed via row / column indices

● Same problems with searching as arrays

● Makes certain mathematical operations easier

Structures

● Collection of named pieces of data

● Multiple data types within a structure

● Elements within a structure are called fields

● Contents accessed by field name

● Good for grouping related items together



Stacks

● Like a stack of plates

● Oldest items are at the bottom

● Newest items are at the top

● New items are 'pushed' onto the top of the stack

● Retrieved items are 'popped' off of the top of the 
stack

● First in, last out data structure

Stacks

● Often used to provide temporary storage of data 
values

● Can't be searched

– Have to pop each value out to find the one you're 
looking for

● Simple to implement

● Can be used for evaluating expressions

Queues

● Like a queue at the supermarket

● Sequential data structure

● Oldest items are at the front

● Newest items are at the back

● Elements are 'enqueued' at the end

● Elements are 'dequeued' at the front

● First in, first out data structure

Queues

● Used to control access to finite resources

– Petrol pumps, checkouts, printers

● Sequential access only

● Unordered

● Problems with searching

Trees

● Way of storing data values in order

● Two dimensional structure

● Collection of nodes and edges

– Nodes are data items

– Edges connect nodes

● Position of an item in the structure depends on 
the value of a key

● Many types of tree in existence

Trees

● Navigate by the vales of the nodes

● Much faster than sequential search

– Don't need to examine every item

– Adding a level to the tree adds just one more 
comparison

● A level can have many items

● Search speed scales as to the log of �

– � is the number of items in the tree



B-Trees

● Binary trees

● Each node has zero or more subtrees

– Left and right

– Node without a subtree is a leaf

– First node is the root

● Values in left subtree are smaller

● Values in right subtree are greater

B-Trees

● Allow for efficient searches

– Search for value of key

● Often used in indexing

– Databases, file systems

● Can degenerate

– Sequential values 

– Becomes a list

● Inefficient

AVL Trees

● Adel'son-Vel'skii and Landis trees

● Balanced binary trees

● Height between left and right subtree differ by at 
most one

– Height measured between bottom-most nodes

● Height difference maintained by rotations

– Single / double rotate left / right

AVL Trees

● Don't become degenerate

● Always efficient searching

– Close to the theoretical maximum

● Rotations can be expensive

– Frequent insertions / deletions

● Other optimisations for in-order iterations

Summary

● Selection of a data structure is problem dependent

● Arrays and structures are built into most 
programming languages

● Stacks are often used for temporary storage

● Queues control access to a resource

● Trees are efficient for retrieval

● B-Trees can degenerate

● AVL trees are balanced


