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Abstract—This paper describes two new algorithms for opti-
mising the structure of trained Evolving Connectionist System
(ECoS) artificial neural networks (ANN). It also presents the
results of preliminary empirical evaluations of the algorithms.
While ECoS are fast and efficient constructive ANN algorithms
they can lose efficiency if they are allowed to grow too large.
The algorithms presented in this paper reduce the size of a
trained ECoS while retaining the knowledge that the ECoS has
learned. That is, they remove redundant elements of the ECoS
structure in such a way that the performance of the network
is not reduced. The experimental evaluations showed that each
algorithm is capable of achieving this to a different degree over
different data sets. Optimisation of the parameters of one of the
algorithms using an evolutionary algorithm yielded better results.
While the work reported in this paper is preliminary, the results
are promising and the algorithms have the potential to enhance
the usefulness of ECoS ANN.

I. INTRODUCTION

Evolving Connectionist Systems (ECoS) are a family of
constructive neural networks [1]. They are based on the
following principles as stated in [2]:

1) ECoS learn fast from a large amount of data
through one-pass training;

2) ECoS adapt in an on-line mode where new data
is incrementally accommodated;

3) ECoS memorise data exemplars for a further
refinement, or for information retrieval;

4) ECoS learn and improve through active inter-
action with other systems and with the environ-
ment in a multi-modular, hierarchical fashion;

The simplest of the ECoS algorithms is the Simple Evolving
Connectionist System (SECoS) [3], [4]. This consists of three
layers of neurons: the input layer; the evolving layer; and
the output layer. Neurons are added to the evolving layer
during learning, and the activation of the evolving layer
neurons is based on the distance between the current input
vector and the evolving layer neuron’s incoming weight vector.
SECoS have been applied to a variety of problems, including
phoneme recognition [5], [6], computer network security [7]
and predicting outbreaks of insect pests [8], [9]. While SECoS
are likely not capable of solving the kind of complex problems

that deep-learning convolutional neural networks are, they do
have some key advantages:

1) They are fast learning
2) They are computationally efficient in recall

These make SECoS useful for applications in resource-
constrained environments. However, the advantage of being
computationally efficient is lost if the evolving layer is allowed
to grow too large. This can happen when a large number of
training examples have been presented to the SECoS. Due to
the local-learning employed by the training algorithm, it is
possible that many of the evolving layer neurons are actually
redundant [10]. That is, the information represented by the
neuron is or can be represented by another neuron.

Previous work has described different approaches to deal-
ing with this problem. One way is to optimise the training
parameters via evolutionary algorithm [11]–[14]. This has the
disadvantages of firstly requiring training and testing data sets
with which to gauge the performance of the trained ECoS, and
secondly of being computationally intensive due to the number
of evaluations required by an EA. Another approach was
via neuron aggregation [4]. This involves finding groups of
evolving layer neurons that are close together, then combining
them into a single neuron. This has the advantages of not
requiring any external data sets and also being computationally
efficient.

This paper introduces two alternative methods for optimis-
ing trained SECoS networks, one based on the principle of
sleep learning and the other on data clustering of neurons.
Both of these methods are computationally efficient, and do
not require external data sets.

II. SECOS LEARNING

The ECoS learning algorithm is based on accommodating
within the evolving layer new training examples, by either
modifying the weight values of the connections attached to
the evolving layer neurons, or by adding a new neuron to that
layer. The algorithm employed is described in Figure 1.

When a neuron is added, its incoming connection weight
vector is set to the input vector I , and its outgoing weight
vector is set to the desired output vector Od.



for each input vector I and its associated desired output
vector Od do

Propagate I through the network
Find the most activated evolving layer neuron j and its
activation Aj

if Aj < Sthr then
Add a neuron

else
Find the errors between Od and the output activations
Ao

if |Od −Ao| > Ethr then
Add a neuron

else
Update the connections to the winning evolving
layer neuron j

end if
end if

end for

Fig. 1: ECoS learning algorithm

The weights of the connections from each input i to the
winning neuron j are modified according to Equation 1.

Wi,j(t+ 1) = Wi,j(t) + η1(Ii −Wi,j(t)) (1)

where:
Wi,j(t) is the connection weight from input i to j at time t
η1 is the learning rate one parameter
Ii is the ith component of the input vector I

The weights from neuron j to output o are modified
according to Equation 2.

Wj,o(t+ 1) = Wj,o(t) + η2(Aj × Eo) (2)

where:
Wj,o(t) is the connection weight from j to output o at time t
η2 is the learning rate two parameter
Aj is the activation of j
Eo is the signed error at o, as measured according to Equation
3.

Eo = Od −Ao (3)

where:
Od is the desired activation value of o
Ao is the actual activation of o.

This is essentially the perceptron learning rule.

III. SLEEP LEARNING

The neurons in the evolving layers of a SECoS represent
prototypes that are acquired and modified during training.
Novel training examples are added as prototypes, and they are
modified to be representative of groups of examples. During
training, modification of the connection weights of ECoS
networks may move the evolving layer neurons to be very
close together in the input space, making some of the neurons

redundant. Sleep learning is a way of identifying and removing
these redundant neurons. It is performed in an offline mode,
that is, between training sesssions, using the exemplars stored
within the ECoS network: the network is “asleep” to external
stimuli.

The idea of sleep learning in ECoS networks has been
suggested before [15] but the form of sleep learning discussed
in the previous work is based on the idea of strengthening
already learned concepts, rather than reducing the size of the
network. As it is described in this section, it is based upon the
Grow and Learn ANN (GAL) sleep learning algorithm [16],
with modifications that account for the differences between
GAL and ECoS. Thus, it is able to reduce the size of the
ECoS network while also retaining the knowledge captured
by the network. The algorithm for sleep learning of ECoS is
as in Figure 2.

for each neuron n in the evolving layer do
Extract the incoming and outgoing connection weights to
use as an example.
Because the outgoing weight values can exceed unity,
process these weights to fall into the range of the output
layer activation function.

end for
for each example x in the set of extracted examples do

Remove the corresponding neuron n from the network.
Propagate x through the network.
if the maximum neuron activation in the evolving layer
is less than Sthr OR the error is greater than Ethr then

Re-insert n into the network
else

modify the incoming and outgoing connection weights
of the winning neuron, according to Equations 1 and
2

end if
end for

Fig. 2: Sleep learning algorithm

This is essentially the ECoS learning algorithm, applied one
example at a time, where the example is a prototype extracted
from the SECoS. All exemplars are extracted at the start of
learning because the weight modification to neurons examined
later in the sleep learning process can cause a disruption to
the sleep learning process. This is because the purpose of
sleep learning is to eliminate superfluous neurons that are not
necessary to adequately represent all exemplars stored within
the network at the start of sleep learning. If the exemplar
for a neuron is extracted after learning has been applied to
that neuron, then the exemplar will be different. In effect, this
would cause the sleep learning algorithm to chase a moving
target.

IV. MAX-MIN AGGREGATION

Evolving layer neuron aggregation is the process of com-
bining several adjacent neurons into one neuron that represents
all of the previous exemplars for that spatial region. During



the aggregation process, the distance between the incoming
and outgoing weight vectors of neurons is calculated. If
the distances are below specified thresholds, the neurons are
aggregated together. The rationale behind aggregation is to
reduce the size of the evolving layer of the SECoS, while
retaining the knowledge stored within the connections to each
neuron.

Offline aggregation involves finding all of the neurons that
are closer to each other than a certain threshold distance, then
aggregating them together. Aggregation is achieved by finding
the arithmetic mean of the neuron connection weights. Offline
aggregation is performed when training is not being carried
out, and usually has both an incoming connection weight
distance threshold and an outgoing connection weight distance
threshold. This approach does not allow for direct control of
the final size of the SECoS network.

An alternative aggregation method as proposed here is the
offline Max-Min aggregation algorithm. This is described in
Figure 3.

- Extract the exemplars from the trained SECoS
- Calculate the distance between each pair of exemplars
- Select the k exemplars that are the furthest away from
other exemplars
- Perform k-means clustering on the exemplars, using the
k exemplars selected above as the initial cluster centres
- Replace the evolving layer neuron connection weights with
the cluster centroids

Fig. 3: The Max-Min aggregation algorithm

It is called the “Max-Min” algorithm because it maximises
the minimum distance between the initial cluster centroids,
and therefore maximises the distance between the resulting
aggregated neurons. The advantage of this algorithm is that the
number of remaining neurons (k) is determined a priori, and
that this number is the sole parameter used. A single parameter
is, of course, easier to optimise compared to approaches using
multiple parameters.

V. EXPERIMENTS

A. Sleep Learning

As SECoS is primarily a classification algorithm, the pre-
liminary experiments were carried out using the Iris, Mush-
room and Wine classification data sets from the UCI Machine
Learning Repository [17]. As the exact examples used and
their order presented to a SECoS during training will affect
its performance [10] , each data set was randomly partitioned
into a training and testing data set one hundred times. For each
partition, a new SECoS was created then trained on the training
portion of the data set. The SECoS was then recalled over
the training portion, to determine how well it had memorised
the training data, and recalled again over the test portion
to determine how well it generalised. The SECoS was then
subjected to sleep learning optimisation. The optimised SECoS
was then recalled over the training and test data portions. This

showed how much the SECoS forgot during sleep learning, and
how much generalisation deteriorated. The size of the SECoS,
in terms of the number of neurons in the evolving layer, was
recorded before and after sleep learning. The initial learning
and sleep learning parameters were set as in Table I. The sleep
learning sensitivity threshold (SensThr) parameter was set low
to reduce the number of neurons, while the error threshold
(ErrThr) parameter was lowered to maintain the accuracy of
the network. One hundred iterations were carried out over each
data set.

TABLE I: Training and sleep learning parameters

SensThr ErrThr η1 η2
Initial 0.5 0.1 0.5 0.5
Sleep 0.2 0.01 0.5 0.5

B. Evolved-parameter Sleep Learning

In light of the results found for the mushroom data set, it
became apparent that sleep learning is sensitive to parameters.
Additional experiments were therefore carried out to investi-
gate using a simple genetic algorithm (GA) to optimise the
sleep learning parameters. While evolutionary optimisation of
the learning parameters is computationally intensive and time-
consuming, because sleep learning is a relatively light-weight
optimisation algorithm, it is feasible to optimise the parameters
using a GA.

The fitness function used in the GA was:

fi =
nt − nt+1

nt
+ (1− et+1) (4)

where:
nt is the number of neurons in the evolving layer before sleep
learning, and
nt+1 is the number of neurons in the evolving layer after sleep
learning.
et+1 is the network error over the extracted exemplars after
sleep learning. The error over the extracted exemplars before
sleep learning is always zero, as every exemplar will perfectly
match one evolving layer neuron.

The goal of this fitness function is to maximise the size
reduction of the SECoS while minimising the forgetting. While
a multi-objective GA would likely give slightly better results,
for this preliminary work a simple GA with a simple fitness
function was felt to be sufficient.

The experimental approach used was highly similar to the
above. A new SECoS was created and trained on a partition
of the data set, then tested on both the training and testing
partitions. Then the SECoS was subjected to sleep learning
with evolved parameters and the resulting optimised SECoS
recalled again over the training and testing partitions. The GA
had a population size of 50 individuals and was run for 50
generations. One hundred iterations were performed for each
data set.

C. Max-Min Aggregation

The Max-Min aggregation algorithm was investigated in a
slightly different way. The data sets were partitioned into a



training and testing partition as before, and a new SECoS
was created and trained over the training partition. The initial
training parameters were the same as in Table I. At the
completion of training the SECoS was recalled over the
training and testing partitions. The SECoS was then subjected
to Max-Min aggregation for every possible value of k for that
SECoS. That is, if the number of evolving layer neurons was n,
then k ranged from n−1 down to unity. Max-Min aggregation
was performed for each value of k and the training and testing
accuracy evaluated for each result. One hundred iterations of
this process were carried out.

VI. RESULTS

The results for the experiments using sleep learning are
presented in Table II. Accuracies were measured as Cohen’s
Kappa statistic rather than percentages because Kappa is un-
affected by unbalanced class distributions, which could occur
with the random partitioning used in these experiments.

TABLE II: Results of sleep learning as mean and standard
deviation of Cohen’s Kappa.

Set Train Test Neurons
Iris Before 0.95/0.03 0.89/0.05 22.36/3.29

After 0.94/0.04 0.88/0.05 20.53/3.27
Mushroom Before 0.99/0.01 0.99/0.01 352.75/12.48

After 0.08/0.09 0.08/0.09 269.49/14.16
Wine Before 0.99/0.01 0.94/0.04 66.71/5.34

After 0.96/0.03 0.91/0.05 52.82/5.89

While the change in accuracy for the iris networks was small
the reduction in size of the SECoS was also small. Conversely,
the mushroom SECoS had a greater reduction in size but the
post-sleep learning accuracy was poor. Only the experiments
with the wine data set showed a reasonable decrease in size
with 21 % of the initial evolving layer neurons being removed,
with only a 3 % decrease in the Kappa for both the train and
test partitions. This indicates that the sleep learning algorithm
is sensitive to the parameters used.

The results of using a GA to select the sleep learning
parameters are presented in Table III. These results show that
the GA was able to find a set of parameters that reduced the
size of the mushroom networks without decreasing accuracy
as much as the manually selected parameters: the number of
evolving layer neuron on average were reduced by 91 %, while
accuracy decreased by only 4 %. Meanwhile, the iris and
wine networks were also reduced in size to a greater extent
than before, by 68 % and 86 % respectively. These networks
however suffered a slightly greater decrease in accuracy than
before. It appears that the GA favoured reduction in size over
retaining accuracy.

The sleep learning parameters selected by the GA are
presented in Table IV. These parameters show a relatively
large standard deviation (up to 69 % of the mean for the η1
parameter of the iris data set), which indicates that there are a
large number of parameter combinations that will reduce the
size of the network.

The results of the experiments with Max-Min aggregation
are plotted in Figure 4. As the initial (pre-aggregation) size

TABLE III: Results of GA sleep learning as mean and standard
deviation of Cohen’s kappa statistic.

Set Train Test Neurons
Iris Before 0.96/0.03 0.89/0.05 23.06/2.71

After 0.87/0.09 0.81/0.12 7.4/2.43
Mushroom Before 0.99/0.01 0.99/0.01 356.57/11.8

After 0.95/0.15 0.95/0.15 29.75/6.82
Wine Before 0.99/0.01 0.94/0.04 66.1/5.67

After 0.91/0.06 0.85/0.08 9.03/2.88

TABLE IV: Mean and standard deviation of sleep learning
parameters as determined by GA.

Set SensThr ErrThr η1 η2
Iris 0.34/0.23 0.68/0.22 0.37/0.25 0.7/0.37

Mushroom 0.78/0.11 0.33/0.21 0.65/0.23 0.94/0.1
Wine 0.37/0.22 0.67/0.2 0.36/0.25 0.85/0.19

of the trained SECoS varied between iterations, the x-axes
of these plots are the k values as a percentage of the initial
size of the SECoS. The plots show the median values of the
training and testing set kappas. The plots for all three data
sets level off at the 50 % mark for both training and testing.
The median kappas for each data set, with k set to 25, 50
and 75 % of the initial evolving layer size, are presented in
Table V. Even with only 50 % of the number of neurons,
the performance approaches that of the original, unoptimised
networks as presented in Table II.

TABLE V: Median accuracies after Max-Min aggregation,
when retaining 25, 50 and 75 % of the evolving layer neurons.

25% 50% 75%
Set Train Test Train Test Train Test
Iris 0.73 0.76 0.89 0.87 0.92 0.91
Mushroom 0.65 0.66 0.71 0.71 0.75 0.74
Wine 0.83 0.82 0.95 0.9 0.95 0.92

VII. DISCUSSION

It is clear from the results that both sleep learning and
Max-Min aggregation are able to reduce the size of a trained
SECoS network, while retaining the classification accuracy of
the network. For sleep learning, the performance is strongly
determined by the four sleep learning parameters. Finding
an optimal combination of parameter settings is not an easy
task, although a simple genetic algorithm was able to yield
good performance. It is apparent from the large variances
of the sleep learning parameters found by the GA that there
were many combinations of parameters. What is notable about
these parameters is that the means are very different from the
initial training parameters. The two learning rates were on
average substantially higher, as were the error thresholds. It
is apparent that the fitness function used for the GA allows
too much weighting on size reduction and not enough on
maintaining performance. An improved fitness function, or a
multi-objective GA, would solve this problem.

The Max-Min aggregation algorithm also yielded smaller
networks with good classification performance. Depending on
the number of neurons selected, the final accuracy for the iris
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Fig. 4: Max-Min aggregation results. Accuracies are Cohen’s
Kappa over the training and testing partitions of the Iris,
Mushroom and Wine classification data sets.

and wine data sets exceeded the accuracy of the sleep-learning
SECoS. Only the mushroom dataset was consistently better
with sleep learning, but then only when a GA was used to
optimise the parameters.

Optimisation of the Max-Min algorithm is possible and
simpler as there is only one parameter, the value of k. By
developing a suitable measure of optimisation, similar to the
one used by the GA sleep training, it should be possible to
efficiently find an optimal k value using an algorithm such as

Golden Section search.
The algorithms presented in this paper both work, in that

they achieve the desired results of reducing the number of
neurons in the SECoS without degrading accuracy by an
unacceptable amount. They are both relatively fast algorithms,
with the Max-Min algorithm being slightly faster. The sleep
learning algorithm is harder to use as it has four parameters
compared to the one in Max-Min aggregation. However,
optimising the four parameters in sleep learning using an
evolutionary algorithm is less efficient than optimising the
single parameter in Max-Min aggregation. In terms of ease-
of-use, Max-Min aggregation is the only ECoS optimisation
algorithm described so far that has only one parameter.

It is likely that which of the algorithms introduced in this
paper will be useful for a particular problem, depends on the
problem itself. Future work will examine more benchmark
data sets, an improved evolutionary algorithm for selecting the
sleep learning parameters, and optimisation of the k parameter
for Max-Min aggregation. Most importantly, the algorithms
must be evaluated over much larger data sets. The data sets in
this paper, while well-known and adequate for the preliminary
evaluation of the algorithms, were small and simplistic. They
were also static data sets, which are not ideal for evaluating
adaptive models such as ECoS.
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