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Abstract— Modeling of insect pest outbreaks is important for
the protection of economically significant crops. This paper
describes an attempt to model the outbreaks of the aphid
Rhopalosiphum padi in the Canterbury region of New Zealand.
Outbreaks were predicted using two approaches: Firstly, from
moving time windows over weather variables; Secondly, from
the gradient or rate of change of the weather variables. Two ar-
tificial neural network types were used in this modeling, Multi-
Layer Perceptrons (MLP) and Simple Evolving Connectionist
Systems (SECoS). The results show that while SECoS are able
to predict outbreaks of R. padi from either approach, MLP are
unable to do so. Also, the results show that there is no significant
difference in the modeling accuracy of SECoS between either
modeling approach. These results indicate that the rate of
change of weather variables is as important to the prediction
of aphid outbreaks as the values of those variables. This work
represents the first steps towards an outbreak prediction system
that can assist with the management of these crop pests.

I. INTRODUCTION

APHIDS of the species Rhopalosiphum padi are a pest
of economically significant crop plants. R. padi are

winged phytophagous insects that damage crops in two ways:
Firstly, by consuming the sap of the host plants, weakening
the plant; Secondly, R. padi carries the barley yellow dwarf
virus, which stunts the growth of the infected plant and
severely reduces its ability to produce the grains for which
it is cultivated.

The Canterbury region of New Zealand is well-suited to
growing cereals, due to its fertile soil and mild weather
patterns. Wheat and other cereal crops are economically
significant to the region, which makes the adequate control
of pests such as aphids an important activity. The most
significant of the aphid species in Canterbury is R. padi.
While aphids can be controlled with pesticides, it is simply
not feasible to apply pesticide every week in the hope of
preventing aphid outbreaks. This is due to the economic
cost of the pesticides and the negative environmental impacts
associated with pesticide over-use, which includes the build-
up of toxic chemicals in the food chain and the destruction
of otherwise beneficial species. These negative impacts can
be mitigated by the targeted application of pesticides, as de-
termined by the accurate prediction of when aphid numbers
are large enough to require control. These increases in aphid
abundance are known as outbreaks.

It is known that the flight of aphids is correlated with
weather [?]. Previously published work [?], [?], [?], [?],
[?], [?] has focused on using weather variables to predict
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the abundance of aphids. Abundances are also influenced
by factors such as predators, parasites, diseases and crop
size. These complex factors make the prediction of aphid
populations an ideal application for artificial neural networks
(ANN).

While the previous work has focused on predicting aphid
abundance, precise prediction of aphid numbers is not only
difficult but unnecessary. Assuming that the goal of mod-
eling aphid numbers is to decide when to utilize control
measures (such as spraying crops with pesticide), it is
sufficient simply to predict when the numbers of aphids is
going to substantially increase. That is, for the purposes of
control, it is enough to predict outbreaks of aphids, rather
than the magnitude of the outbreaks. The aphid prediction
problem can therefore be simplified to predicting when these
outbreaks, or spikes in abundance, are going to occur.

Interestingly, some of the previous work [?] has found
that the changes in weather variables were just as effective
predictors than the actual values of the variables. In other
words, the numbers of aphids were influenced by the changes
in the weather that occurred over time. From this it can
be hypothesized that the rate of change of the weather
variables, rather than the values of the variables themselves,
are effective for predicting aphid abundance.

The work reported in this paper compares two ANN
models, the standard multi-layer perceptron (MLP) and the
evolving connectionist system (ECoS). Rather than predict-
ing the absolute abundance of aphids for a given time
period, the ANN predict when an outbreak is about to occur.
Predictions were made using both a sliding time-window of
weather variables, and the rate of change of each of those
variables. Three research questions were investigated in this
work:

1) Can evolving connectionist systems out-perform clas-
sical ANN models when predicting outbreaks?

2) Can the rate of change of weather variables be used to
predict outbreaks of aphids?

3) Does the size of the temporal window of weather
variables affect the prediction accuracy?

II. METHODS

A. Data

The initial source of the data was Crop and Food of
Lincoln, Canterbury, New Zealand. Crop and Food is a gov-
ernment research agency responsible for developing better
methods of agriculture. Aphids were caught using a suction
trap at the Lincoln Crop and Food research station. A suction



trap is a large, vertically mounted pipe that has a fan at
the bottom that generates a suction. Small flying insects are
drawn into the pipe and trapped in a filter before reaching
the fan. The filter was removed from the trap at the end of
each week, and the insects inside were classified and counted.
Only counts of R. padi were included in this data set. Twenty
two years of aphid counts were available, for the period mid-
1981 to mid-2004. These counts are shown in figure ??.
From this plot it is clear that the aphids undergo periodic
outbreaks. The period between outbreaks is irregular, as are
the magnitudes of the outbreaks.

Fig. 1. Aphid abundances

Thirteen weather variables were also recorded continu-
ously over this time period, as listed in table ??. As the
potential rainfall deficit variable ranged quite highly, the log
of this variable was also included, as previous work [?] had
shown that this improved performance.

TABLE I
WEATHER VARIABLES USED.

Average rainfall (mm)
Cumulative rainfall (mm)
Wind run (km/day)
Maximum air temperature (◦C)
Minimum air temperature (◦C)
Mean air temperature (◦C)
D-days, cumulative temperature for the week
Grass temperature (◦C)
Soil temperature at 100 centimetres below ground (◦C)
Penman potential evaporation (mm)
Potential deficit of rainfall, accumulated excess of Penman over rainfall
Vapour pressure (hecto Pascals)
Solar radiation (MJ/m2)

The abundances were converted into outbreak classes by
applying a threshold to the aphid counts. Any values greater
than or equal to the threshold were converted to unity, while
any values less than the threshold were converted to zero.
The threshold used here was seventeen, which meant that
20% of the weekly counts were considered to be outbreaks.
It is important to bear in mind that the number seventeen was
the number of aphids caught at a single point (the location of
the suction trap). There would therefore be many, many more
aphids in the wild attacking the nearby crops. Predictions
were made one week ahead, that is, the goal was to predict
whether an outbreak would occur in the following week.

All variables were linearly normalized to the range zero
to unity. As R. padi is known to have a three week life
cycle, a temporal element must be included in the input
variables. Two approaches were used for this. In the first,
a sliding window was passed over each of the variables.
Window sizes of three, four, five and six were tested. The
number of aphids observed per week was included as an input
variable that was also windowed. This gave an input vector of
size 45, 60, 75 or 90 elements. The second approach sprang

from the observation in previous work [?] that the changes
in the weather variables were just as useful for predicting
abundance as the absolute values of the variables. In this
paper, rather than using the changes in values as predictors,
the rate of change of each variable over a particular time
window was calculated . The time windows were the same
size as the sliding windows (three, four, five or six weeks).
The advantage of this approach is that the input vector always
has fifteen elements in it, no matter the size of the time
window. The rate of change was calculated by fitting a linear
regression line over the values in that window, and taking the
gradient.

B. Cross Validation

Data was divided into years, and the years grouped to-
gether into ten subsets so that ten-fold cross-validation could
be carried out. For each fold, one of the subsets was held out
as a test data subset and the ANN trained on the remaining
nine subsets. The network was then recalled over the held-
out test subset to test the networks generalization ability.
At the end of the ten folds, the generated predictions from
the test subsets were combined into a single data set and
compared with the known outputs. Accuracy was measured
as a simple percentage of true positive, true negative, and
overall examples correctly classified. Since only 20% of the
examples were positive, it was possible to have a high overall
percentage while only classifying the negative examples
correctly. In other words, an ANN could score an overall
accuracy of 80%, and a true negative accuracy of 100%,
simply by classifying every example as negative. To deal
with this bias, accuracies were also measured using Cohen’s
kappa statistic [?]. The advantage of the kappa statistic is
that it is a single metric that is not biased by an unbalanced
number of examples from the two classes. Thus, while the
overall percentage accuracy will be biased by the fact that
only 20% of the weeks represent outbreaks (making it easy
to achieve at least 80% accuracy), the kappa statistic requires
accuracy over both classes in order to achieve a high score.
Accuracies were also measured over each held-out subset so
that ten accuracies were available for each cross-validation
run. These sets of accuracies were needed to perform a
statistically valid comparison between modeling approaches.

C. Modeling with MLP

This work used standard MLP trained with back-
propagation with momentum. The networks had two hidden
neuron layers and each layer, apart from the input layer, used
logistic activation functions. A variety of hidden neuron layer
sizes and back-propagation parameters were investigated via
a trial-end-error process, where selection of the better pa-
rameters was based on the kappa statistic over the combined
generalization data set.

D. Evolving Connectionist Systems

Evolving Connectionist Systems (ECoS) are a family
of constructive ANN that expand and adapt their internal
structure during learning. First proposed in 1998 [?], there



are many models within the ECoS family, including the
Evolving Fuzzy Neural Network EFuNN [?] and the Simple
Evolving Connectionist System SECoS [?]. For a review of
ECoS networks, see [?]. ECoS networks are fast learning
models, and have been shown to have comparable or superior
performance to conventional models like MLP [?].

The experiments in this work used the SECoS model.
This model has three layers of neurons: the input layer,
which has the same function as the input neuron layer of
MLP; the evolving layer, which is where neurons are added
during training; and the output layer, which again has the
same function as the output neuron layer of MLP. SECoS
has four training parameters: the first two are the sensitivity
threshold and the error threshold, which control the addition
of neurons to the evolving layer. The other two are the two
learning rates, which control the adaptation performed in the
input to evolving layer connection weights, and the evolving
layer to output layer connection weights. The software used
is available from [?]. As SECoS are able to train quickly
compared with MLP, the optimal training parameters were
approximated by performing an exhaustive combinatorial
search over the parameter space. Selection of the training
parameters was made by inspection of the kappa statistic
over the combined generalization data set and of the number
of neurons added to the evolving layer. Some parameter
combinations will cause an evolving layer neuron to be
added to the SECoS for every training example, which is
not optimal as it leads to over-fitting and inefficient use of
computing resources. Therefore, parameter combinations that
caused neurons to be added for every training example were
rejected and the selection made from the remaining results.

III. RESULTS

After extensive experimentation with the architecture and
training parameters of the MLP, no MLP was able to produce
an acceptable accuracy. The kappa statistic for each MLP
over both the training and testing data sets was consistently
zero. This was caused by the inability of the MLP to achieve
a true positive accuracy greater than zero. In other words, the
MLP were unable to predict outbreaks at all. This was the
case for both the windowed inputs, for all window sizes,
and for the gradient inputs, for gradients calculated over all
window sizes.

Conversely, the SECoS networks were able to learn to
predict outbreaks to an acceptable level of accuracy. The
accuracies of SECoS trained using moving windows of
variables are presented in table ??, while the results for the
gradients are in table ??. These results show that SECoS are
able to predict outbreaks no matter the input representation
scheme. There is no variation in accuracy or size of the
SECoS for the gradient representation scheme, while the
amount of variation in accuracy for the window scheme
is small. There is a substantial variation in the size of
the SECoS for the window representation scheme. This is
understandable, as different numbers of input variables will
require different numbers of neurons to model. There were
no significant differences (two-tailed t-test, p=0.1) between

the kappa statistics for either representation scheme, while
the SECoS were significantly larger for the windowing
representation, with the exception of window size of three,
which was extremely small.

TABLE II
ACCURACIES OF SECOS TRAINED OVER WINDOWS OF WEATHER

VARIABLES. THE COLUMN “WINDOW” IS THE NUMBER OF WEEKS IN

THE WINDOW. COLUMN “KAPPA” IS THE COHEN’S KAPPA STATISTIC.
“TN %” IS THE PERCENTAGE OF TRUE NEGATIVE EXAMPLES

CORRECTLY CLASSIFIED, “TP %” IS THE PERCENTAGE OF TRUE

POSITIVE EXAMPLES CORRECTLY CLASSIFIED, AND “OVERALL” IS THE

PERCENTAGE OF ALL EXAMPLES CORRECTLY CLASSIFIED, WHETHER

NEGATIVE OR POSITIVE. “NEURONS” IS THE NUMBER OF NEURONS IN

THE EVOLVING LAYER OF THE SECOS AFTER TRAINING. ACCURACIES

ARE GENERALIZATION ACCURACIES OVER THE ENTIRE DATA SET

Window Kappa TN % TP % Overall % Neurons
3 0.414 87.4 54.8 80.9 28.4
4 0.436 81 70.2 78.8 208
5 0.423 84.7 61.1 80 210.7
6 0.414 89.4 51 81.7 187.4

TABLE III
ACCURACIES OF SECOS OVER THE GRADIENTS OF WEATHER

VARIABLES. THE COLUMN “WINDOW” IS THE NUMBER OF WEEKS OVER

WHICH THE GRADIENT WAS MEASURED. OTHER COLUMN LABELS ARE

AS IN TABLE ??

Window Kappa TN % TP % Overall % Neurons
3 0.379 80.4 63.5 77 101
4 0.379 80.4 63.5 77 101
5 0.379 80.4 63.5 77 101
6 0.379 80.4 63.5 77 101

IV. DISCUSSION

Three research questions were posed in the Introduction to
this paper. The results allow them to be answered as follows:

1) Can evolving connectionist systems out-perform classi-
cal ANN models when predicting outbreaks?
None of the MLP were able to predict the outbreaks at all.
SECoS networks were able to predict outbreaks at least 54.8
% of the time for a window size of three weeks, and up to
70.2 % of the time for a window size of four weeks. From
these results, it can be concluded that evolving connectionist
systems, as represented by SECOS, out-perform classical
ANN, as represented by MLP.

2) Can the rate of change of weather variables be used to
predict outbreaks of aphids?
The answer to this is an unqualified yes. Firstly, the kappa
statistics for the SECoS trained over the gradient of the
input variables were all above zero, which corresponds to an
accuracy better than chance. The true-positive percentages
were all above 50 %, again indicating a better than chance
performance. Secondly, there were no significant differences
in the kappa statistics between the SECoS trained on the



gradients of the input variables and the SECoS trained on
the windows of input variables.

3) Does the size of the temporal window of weather
variables affect the prediction accuracy?
The answer to this question is less clear. Varying the size
of the input window altered the best accuracy of the SECoS
trained on windowed weather variables, and led to a wide
variation in the number of neurons added to the SECoS
evolving layer during training. However, the performance of
the SECoS trained on the gradients of the weather variables
did not alter with the size of the window over which the
gradients were measured. While the data definitely varied
with the different window sizes, it seems that the variation
was not enough to cause any changes in accuracy.

It is not currently known why MLP were unable to predict
outbreaks, when the previous research has shown that they
are able to model the abundance [?], [?]. However, when
modeling abundance a common problem was that the MLP
badly under-estimated the magnitude of the outbreaks. Thus,
while they were able to predict an upward swing in aphid
numbers, they were not able to detect a large increase. It is
possible that the predicted upward swings in the abundance
were below the threshold value chosen here, but that by itself
does not entirely explain the inability to predict outbreaks.

While the aphid numbers and weather variables used in
this study are considered to be data of high confidence, there
are several other factors that complicate the results. Firstly,
data is not available on the use of control measures such
as pesticides during the study period. The use of pesticides
would reduce the number of aphids present and potentially
prevent further outbreaks. Secondly, data is not available
on the amount of crops in existence at each time period.
As R. padi is a phytophagous insect, their numbers are
more likely to increase when a larger amount of food is
available for them. Finally, while aphids have several natural
predators, the abundance of these predators is not known.
Clearly, an increase in the abundance of predators would
lead to a decrease in the abundance of aphids, at least until
an equilibrium was reached.

Overall, this work has shown that prediction of outbreaks
of R. padi is possible. Future work will focus on improving
the prediction accuracy. Ultimately, an outbreak prediction
system could assist with the effective management of these
crop pests.
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