Intelligent Systems for Bioinformatics

Michael J. Watts
http://mike.watts.net.nz

Lecture Outline

- What is bioinformatics?
- What is DNA?
- How is it processed in cells?
- What is DNA data?
- How is DNA data represented?
- How can IS be applied to DNA data?

What is Bioinformatics?

- Computational analysis of biological sequences
- Many different kinds of biological data exist
- Amount of data increasing at an exponential rate
- Need automated methods of processing it

What is DNA?

- Deoxyribonucleic Acid
- Storage medium of genetic information in higher organisms
- Encapsulated in cell nucleus of eukaryotic (multicellular) organisms
- Consists of long chains of nucleotides
- Two chains in double helix structure

What is DNA?

- Four bases:
 - Adenine A
 - Guanine G
 - Thymine T
 - Cytosine C
- Sequence of bases encodes genetic information

How is DNA Processed in Cells?

- “Central Dogma of Molecular Genetics”
- Describes the flow of information from DNA to protein

![Diagram](Diagram of DNA Replication, Transcription, and Translation)
DNA Processing

- DNA is transcribed into messenger RNA (mRNA)
 - RNA is a less stable relative of DNA
 - replaces Thymine (T) with Uracil (U)
- RNA strand read by ribosome to produce protein (translation)

Transcription

- DNA split into single strands
- RNA polymerase binds to DNA strand at promoter site
- RNA strand formed from DNA base complements
 - A -> U, G -> C
 - C -> G, T -> A

RNA Translation

- Triplets of RNA bases (codons) translated to amino acid (residue)
 - The genetic code
 - amino acids linked to form protein
- Protein folds according to electrostatic forces
- Shape of protein determines it’s function

DNA Data

- Many different kinds of DNA data and DNA related data in existence
- DNA promoter data
- RNA splice junction data
- The “genetic code”
- Protein sequences and configurations

Representing Biological Data

- Basic sequence data string of letters
 - A, C, G, T (DNA)
 - A,C,D,E, etc for Amino Acids
- Can be represented in several ways
- Substitute arbitrary numbers for letters
 - e.g. A=1, C=2, G=3, T=4
 - doesn’t reflect some properties of the bases
 - problems dealing with uncertainty
 - Theoretical problems (measurement theory)
Representing Biological Data

- Binary representation
 - orthogonal encoding
 - each base can be one of four (or 20)
 - represent each base by four bits
 - i.e. A = 1000, C = 0100, etc.
 - handles uncertainty better
 - e.g. A or C = 1100
 - still ignores properties of the bases

Representing Biological Data

- Electron Ion Interaction Potential (EIIP)
 - Measure of the chemical properties of DNA bases
 - Preserves information about the properties of the bases
 - Specific to DNA
 - Problems with uncertainty remain

Representing Biological Data

- Charge, hydrophobicities
 - biophysical properties of amino acids
 - been tried in the past, but never really successful
 - specific to proteins

Applications of IS to Biological Data

- IS can be applied to each stage of the protein synthesis process
- identifying DNA promoter sites
- identifying RNA splice sites
- modelling the genetic code
- predicting protein configuration

Identifying DNA Promoter Sites

- Promoters are the start of coding regions of DNA
- DNA coding regions have known termination points
 - typically AATAAA
- ANN can be trained to classify a region of DNA as promoter or non-promoter

RNA Splice Site Prediction

- Splicing is the second step in removing unused information
- Sites can be either intron - exon (non-coding - coding) or
- exon - intron (coding - non-coding)
- MLPs and Knowledge based neural networks (KBNN) have both been applied
RNA Splice Site Prediction

- Data set consists of sequences of 60 nucleotides
- Each sequence represents either
 - intron - exon junction
 - exon - intro junction
 - non-junction region
- Binary representation of bases used
- Performance exceeds statistical methods

Modelling the Genetic Code

- 3 bases in each codon (64 combinations)
- 20 natural amino acids plus STOP codon
- Genetic code is degenerate
- Train a MLP to model the genetic code
- Problems with training indicate properties of the genetic code
- Internal representation matches known biochemical groupings

Protein Configuration Prediction

- Proteins are formed from chains of amino acids
- Proteins have primary, secondary, tertiary and quaternary structures
- Primary structure is its amino acid sequence
- Electrostatic forces folds it into secondary, tertiary or even quaternary structures
- Final structure determines it’s biological function
- Secondary structure consists of sub structures
 - alpha helix
 - pleated (or beta) sheet
 - rest is coil
- Can use ANN to predict the structure from amino acid sequence

Secondary Structure Prediction

- Modelled with an ANN in 1988
- Used an MLP to predict secondary structure classes
- Input was a ‘window’ of 13 residues
- Predict which SS centre of the window is in
- Each residue represented by a 21-bit vector
 - 1 bit for each residue type
 - +1 for 'spacer' bit
- Total input size of 273 bits
- 3 output nodes
 - helix, sheet, coil
Secondary Structure Prediction

- Sequence profiles
 - Find a set of known proteins that are similar (homologous) to the unknown protein
 - Align the homologues with the unknown so that the maximum number of residues match
 - Use the alignment to construct a profile of residue frequencies

- Use the profile and other measures as inputs to the ANN
- This gives the best prediction results so far (>86% accuracy)
- Used in the PhD prediction server
 - e-mail based prediction server

Protein Configuration Prediction

- Genetic algorithms used to predict tertiary structure
- Fitness based on the energy required to maintain each structure
 - GA aims to minimise energy
- Alternative is to use brute force search
 - very time consuming

Signal Peptide Cleavage

- Proteins that are exported from a cell are “marked”
 - “signal” molecule at end of protein
 - Cleaved off before export
- ANN can be used to predict where the “signal” section ends
- Organism specific, to some extent

Signal Peptide Cleavage

- Prediction is based on structure, rather than sequence
- Statistical methods have problems modelling this kind of thing
- ANN have shown some promise
 - Still work to be done

Conclusion

- Bioinformatics is a very large field
- Filled with many challenges
 - and lots of $$$!
- HUGE amount of data exists and being continuously produced
- Problems with processing it all
- Intelligent systems can be used to do this