Lecture Outline

Genetic Algorithms

Michael J. Watts

http://mike.watts.net.nz

- Genetic algorithms
- Jargon
- Advantages of GAs
- Disadvantages of GAs
- Simple genetic algorithm
- Encoding schemata
- Fitness evaluation

Lecture Outline

- Selection
- Creating new solutions
- Crossover
- Mutation
- Replacement strategies
- Word matching example

genetics" Goldberg, 1989

Genetic Algorithms

- A kind of evolutionary algorithm
- Also known as GA(s)

Jargon

Genetic Algorithms

"Genetic algorithms are search algorithms based on

the mechanics of natural selection and natural

- Locus a position on a chromosome
- Gene a portion of a chromosome representing a parameter of the solution set
- Alleles different values of a particular gene. Members of the domain of the gene's value
- Chromosome string of genes

Jargon

- · Genotype coding of the solution
- Phenotype expression of the genotype
- Population group of individuals capable of interbreeding

Advantages of GA

- Efficient means of investigating large combinatorial problems
 - can solve combinatorial problems many orders of magnitude faster than exhaustive 'brute force' searches

Disadvantages of GA

- · GAs are not 'silver bullets' for solving problems
- Must be able to assess the quality of each attempt at a solution
 - can't crack PGP with a GA

Disadvantages of GA

- Computationally expensive
 - some problems require many days or weeks to run
 - often still faster than brute force, however
- · Blind, undirected search
 - difficult to direct a GA towards optimal solution area if known

Disadvantages of GA

- · Can be sensitive to initial parameters
 - parameters such as mutation can significantly influence the search
- Stochastic process
 - not guaranteed to find an optimal solution, just highly likely to

Simple Genetic Algorithm

- 1. Select an encoding schema
- 2. Randomly initialise chromosome pool
- 3. Evaluate each individual in the population
- 4. Select fit individuals to breed new population
- 5. Create new population from parents
- 6. Replace old population with new population
- 7. Repeat steps 3 6 for each generation

Encoding Schemata

- Two competing principles
- Meaningful building blocks
 - "user should select a coding so that short, low order schemata are relevant to the underlying problem"
- · Minimal alphabets
 - "user should select the smallest alphabet that permits a natural expression of the problem"

Fitness Evaluation

- Method dependent upon problem
- Involves quantifying performance of the phenotypes

Fitness Evaluation

- Normalisation or scaling of fitness values required to prevent good solution overwhelming later generations
 - known as "premature convergence"
 - similar to the 'local minima' problem with neural networks

Selection

- Involves selecting the parents of the next generation
- Many methods in existence
- All based upon the fitness of the individual

Selection

- · Roulette selection
 - each individual is given a slice of a virtual roulette wheel
 - size of each slice is proportional to fitness
 - spin the wheel once to select each individual

Roulette Selection

Individual	Fitness	
A	0.25	
В	0.2	
С	0.4	
D	0.1	
E	0.05	

Roulette Selection

Create New Solutions

- · Creates new individuals from selected parents
- Two operators come into play
 - crossover, and
 - Mutation

Crossover

- Two chromosomes join at one or more points and exchange genes
- Types of crossover include

Crossover

One point
chromosomes join at only one locus

Crossover

- Two point
 - chromosomes join at two loci

Crossover

• Uniform

- crossover at each locus determined by a "coin toss"

Mutation

- One or more allele is randomly chosen and it's value changed
- Method of change depends upon coding schema used
- Best rate of mutation subject of much current research

Mutation

- Some dispute it's necessity
- Effect of mutation dependent upon size of alphabet
 - the higher the cardinality of the alphabet, the lower the benefit of mutation

Replacement Strategies

- Replace some or all of the parent population with children
- Many different replacement strategies available
- Most concerned with preserving 'good' genes and purging 'bad' genes

Word Matching Example

- Problem is to 'guess' a word
- Difficult to solve with a brute force approach
 - assuming case sensitivity, to investigate every possible combination of letters in a seven letter word would require 1,028,071,702,528 attempts

Word Matching Example

- · Assume trying to guess the word 'genetic'
 - assign fitness based on number of correct letters in the correct place
- · Step one: select an encoding schema
 - use characters

Word Matching Example

- Step two: initialise the population
 - 1. kdjirid
 - 2. ginddcc
 - 3. nmugjyb
 - 4. zezezez
 - 5. uhjklyt
 - 6. wojikli
 - 7. kladonn
 - 8. flortik

Word Matching Example

• Step three: evaluate the population

individual	genotype	fitness
1	kdjirid	1
2	ginddcc	3
3	nmugjyb	0
4	zezezez	2
5	uhjklyt	0
6	wojikli	0
7	kladonn	0
8	flortik	2

Average fitness = 1

Word Matching Example

• Step four: select breeding population

- selection based on fitness, so breeding population is

individual	genotype	fitness
2	ginddcc	3
2	ginddcc	3
2	ginddcc	3
4	zezezez	2
4	zezezez	2
8	flortik	2
8	flortik	2
1	kdiirid	1

Word Matching Example

- Step five: create new population
 - crossover comes into play
 - no mutation used here to keep things simple
 - eg. cross individual 2 with individual 4
 individual 2 genotype is: ginddcc
 - individual 4 genotype is: zezezez
 - crossing over produces : genedec

Word Matching Example

• New population is:

individual	genotype	fitness	
1	genedec	5	
2	glnrdic	4	
3	fdoitik	2	
4	zdziziz	1	
5	gdnidic	4	
6	feoetek	3	
7	kijdred	0	
8	zlzrez	0	

average fitness = 2.375

Summary

- Genetic algorithms are a class of evolutionary algorithm
- Able to efficiently investigate large search spaces
- Have two major requirements
 - representation
 - Evaluation

Summary

- Population evolves by creating more offspring from fitter members
 - fitness based selection
- Offspring created using crossover and mutation operators
- Must be mindful of the disadvantages