Backpropagation Training

Michael J. Watts
http://mike.watts.net.nz

Lecture Outline

- Backpropagation training
- Error calculation
- Error surface
- Pattern vs. Batch mode training
- Restrictions of backprop
- Problems with backprop

Backpropagation Training

- Backpropagation of error training
- Also known as backprop or BP
- A supervised learning algorithm
- Outputs of network are compared to desired outputs

Backpropagation Training

- Error calculated
- Error propagated backwards over the network
- Error used to calculate weight changes

\[y_j - o_j \]

Forward pass:

1. Apply an input vector \(\mathbf{x} \) and corresponding output vector \(\mathbf{o} \) (the desired output).

2. Propagate forward: the input signal through all the neurons in all the layers and calculate the output signal.

3. Calculate the error for each output neuron: \(\varepsilon_j = y_j - o_j \) where \(y_j \) is the desired output of the previous output neuron \(o_j \).

Backward pass:

4. Adjust the weights between the input and hidden neurons and between the hidden and output neurons using the calculated error and the learning rate \(\alpha \).

5. Calculate the error for each neuron in the hidden layer: \(\varepsilon_i = y_i - o_i \).

6. Propagate the error back to the neurons in the previous layer: \(\varepsilon_i = y_i - o_i \) and \(\Delta w_{ij} = \alpha \varepsilon_j o_i \).
Backpropagation Training

\[w_{i,j}(t + 1) = w_{i,j}(t) + \eta \Delta w_{i,j} + \alpha \Delta w_{i,j}(t) \]

- where:
 - \(\Delta \) is the weight change
 - \(\eta \) is the learning rate
 - \(\alpha \) is the momentum term

\[\Delta w_{i,j} = \frac{\partial E}{\partial w_{i,j}(t)} \]

- Where
 - \(\Delta w_{i,j} \) is the change to the weight
 - \(\frac{\partial E}{\partial w_{i,j}(t)} \) is the partial derivative of the error \(E \) with respect to the weight \(w \)

Error Calculation

- Several different error measures exist
 - applied over examples or complete training set
- Sum Squared Error
 - SSE
- Mean Squared Error
 - MSE

Error Surface

- Plot of network error against weight values
- Consider network as a function that returns an error
- Each connection weight is one parameter of this function
- Low points in surface are local minima
- Lowest is the global minimum

Error Calculation

- Mean Squared Error
 - measured over individual examples
 - reduces errors over multiple outputs to a single value

\[Err_j(p) = \frac{(d_j^{(p)} - a_j^{(p)})^2}{2} \]
At any time t the network is at one point on the error surface.

Movement across surface from time t to $t+1$ is because of BP rule.

Network moves “downhill” to points of lower error.

BP rule is like gravity.

Learning rate is like a multiplier on gravity.

Determines how fast the network will move downhill.

Network can get stuck in a dip.
- stuck in a local minimum
- low local error, but not lowest global error

Too low learning rate = slow learning.

Too high = high chance of getting stuck.

Momentum is like the momentum of a mass.

Once in motion, it will keep moving.

Prevents sudden changes in direction.

Momentum can carry the network out of a local minimum.

Not enough momentum = less chance of escaping a local minimum.

Too much momentum means network can fly out of global minimum.
Pattern vs Batch Training

- Also known as
 - batch and online
 - offline and online
- Pattern mode applies weight deltas after each example
- Batch accumulates deltas and applies them all at once

Batch mode is closer to true gradient descent
- requires smaller learning rate
- Step size is smaller
- Smooth traversal of the error surface
- Requires many epochs

Pattern vs Batch Training

- Pattern mode is easier to implement
- Requires shuffling of training set
- Not simple gradient descent
 - Might not take a direct downward path
- Requires a small step size (learning rate) to avoid getting stuck

Restrictions on Backprop

- Error and activation functions must be differentiable
- Hard threshold functions cannot be used
 - e.g. step (Heaviside) function
- Cannot model discontinuous functions
- Mixed activation functions cannot be used

Problems with Backprop

- Time consuming
 - hundreds or thousands of epochs may be required
 - variants of BP address this
 - quickprop
- Selection of parameters is difficult
 - epochs, learning rate and momentum

Problems with Backprop

- Local minima
 - can easily get stuck in a locally minimal error
- Overfitting
 - can overlearn the training data
 - lose the ability to generalise
- Sensitive to the MLP topology
 - number of connections
 - "free parameters"
Summary

● Backprop is a supervised learning algorithm
● Gradient descent reduction of errors
● Error surface is a multidimensional surface that describes the performance of the network in relation to the weight

• Traversal of the error surface is influenced by the learning rate and momentum parameters
• Pattern vs. Batch mode training
 – difference is when deltas are applied
• Backprop has some problems
 – local minima
 – Overfitting