Lecture Outline

Multi-Layer Perceptrons

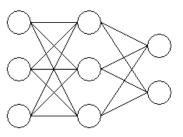
Michael J. Watts

http://mike.watts.net.nz

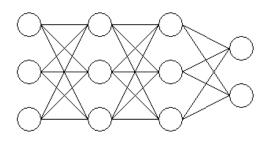
- · Perceptron revision
- Multi-Layer Perceptrons
- Terminology
- Advantages
- Problems

Perceptron Revision

- Two neuron layer networks
- Single layer of adjustable weights
- Feed forward network
- · Cannot handle non-linearly-separable problems
- Supervised learning algorithm
- Mostly used for classification

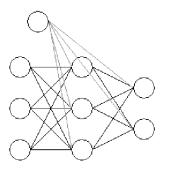

Multi-Layer Perceptrons

- Otherwise known as MLPs
- Adds an additional layer (or layers) of neurons to a perceptron
- Additional layer called hidden (or intermediate) layer
- Additional layer of adjustable connections


Multi-Layer Perceptrons

- Proposed mid-1960s, but learning algorithms not available until mid-1980s
- Continuous inputs
- · Continuous outputs
- Continuous activation functions used
 e.g. sigmoid, tanh
- Feed forward networks

Multi-Layer Perceptrons


Multi-Layer Perceptrons

Multi-Layer Perceptrons

- MLPs can also have biases
- A bias is an additional, external, input
- Input to bias node is always one
- Bias performs the task of a threshold

Multi-Layer Perceptrons

Multi-Layer Perceptrons

- · Able to model non-linearly separable functions
- Each hidden neuron is equivalent to a perceptron
- Each hidden neuron adds a hyperplane to the problem space
- Requires sufficient neurons to partition the input space appropriately

Terminology

- Some define MLP according to the number of connection layers
- Others define MLP according to the number of neuron layers
- Some don't count the input neuron layer
 - doesn't perform processing
- Some refer to the number of hidden neurons layers

Terminology

- · Best to specify which
 - i.e. "three neuron layer MLP", or
 - "two connection layer MLP", or
 - "three neuron layer, one hidden layer MLP"

Advantages

- A MLP with one hidden layer of sufficient size can approximate any continuous function to any desired accuracy
 - Kolmogorov theorem
- MLP can learn conditional probabilities
- MLP are multivariate non-linear regression models

Advantages

- · Learning models
 - several ways of training a MLP
 - backpropagation is the most common
- Universal function approximators
- · Able to generalise to new data
 - can accurately identify / model previously unseen examples

Problems with MLP

- Choosing the number of hidden layers
 - how many are enough?
 - one *should* be sufficient, according to the Kolmogorov Theorem
 - two will always be sufficient

Problems with MLP

- · Choosing the number of hidden nodes
 - how many are enough?
 - Usually, the number of connections in the network should be less than the number of training examples
- As number of connections approaches the number of training examples, generalisation decreases

Problems with MLP

- Representational capacity
- Catastrophic forgetting
- Occurs when a trained network is further trained on new data
- Network forgets what it learned about the old data
- · Only knows about the new data

Problems with MLP

- · Initialisation of weights
- Random initialisation can cause problems with training
 - start in a bad spot
- Can initialise using statistics of training data
 - PCA
 - Nearest neighbour

Problems with MLP

- Weight initialisation
 - can initialise using an evolutionary algorithm
 - initialisation from decision tress
 - initialisation from rules

Summary

- MLP overcome the linear separability problem of perceptrons
- Add an additional layer of neurons
- · Additional layer of variable connections
- No agreement on terminology to use
 - be precise!

Summary

- Convergence is guaranteed over continuous functions
- Problems exist
 - but solutions also exist