Chapter 4

Crisp Rule Based Systems

4.1 Introduction

- -Production systems
- -Facts & Templates
- -Production rules
- -The inference process
- -Advantages of production systems
- -Disadvantages of production systems
- -Expert systems

4.2 Production Systems

- -A production system consists of
- -Working memory (facts memory)
- -Production rules memory
- -Inference engine
- -Working memory
- -working memory of the system
- -stores the facts currently being dealt with
- -facts also called working memory elements
- -Production rules memory
- -stores the set of productions (rules) of the system
- -long term memory of the system
- -Inference Engine
- -control mechanism of the system
- -matches facts from working memory with productions
- -selects rules to execute

4.3 Facts

```
-Production rules assess and manipulate facts
```

- -Facts are propositions about the objects dealt with by the system
- -Facts are represented within templates

```
( <object or relation> <attribute_1> <attribute_2>...<attribute_k> )
```

4.3.1 Templates

```
-examples (is_a <relationship> <name1><name2>) a template (is_a father John Mary) a fact (<car_par><parameter><value>) a template (car_par temperature 135) a fact (<car_status><system> functioning <status>) a template (car_status breaks functioning slowly) a fact (car_status cooling functioning overheating) a fact (car_status gauge functioning OK) a fact (<lecture_attribute>cproperty><value>) a template (Presentation is Dull) a fact
```

4.4 Production Rules

- -Productions are transformation rules
- -Gives one string from another string
- —e.g.,
- —AB ¿ CD
- Useful for things like compilers, as well as Production Systems
- -A production rule consists of two parts
- -left and right
- -left side also known as
- -condition
- -antecedent
- -right side also known as
- -conclusion
- -action
- -consequent
- -Antecedent part of the rule describes the facts or conditions that must exist for the rule to fire
- -Consequent describes
- -the facts that will be established, or
- -the action that will be taken

```
IF (conditions) THEN (actions)
IF (antecedents) THEN (consequents)
```

- -Condition elements can be:
- -a negation of a fact (means absence of this fact);

```
-i.e. logical NOT
```

- -e.g. If NOT (sky_is cloudy)
- -expressions with variables or wild cards; a wild card is a variable which can be satisfied by any value; e.g. temperature ¿ 120.
- -Examples
- IF (Gauge is OK) AND [TEMPERATURE] > 120

 THEN Cooling system is in the state of overheating
- IF (Presentation is Dull) AND (Voice is Monotone) THEN Lecture is boring
 - IF (Gauge is OK) AND [TEMPERATURE] < 100 THEN Cooling system is functioning normally
- IF NOT (Presentation is Dull) AND (Voice is Lively) THEN Lecture is Great

4.5 The Inference Process

- -Antecedent Matching
- -matches facts in working memory against antecedents of rules
- -each combination of facts that satisfies a rule is called an instantiation
- -each matching rule is added to the conflict set or agenda
- -One rule at a time fires
- -Rule must be selected from the Agenda
- -Some selection strategies:
- -recency
- -triggered by the most recent facts
- -specificity
- -rules prioritised by the number of condition elements
- -matches rules with fewer instantiations
- -Rule selection:
- -refraction
- —once a rule has fired, cannot fire again for a period of time
- -certain number of cycles or permanently
- -salience
- -based on priority number attached to each rule
- -random
- -choose a rule at random from the agenda
- -Execution of the rule
- -can modify working memory
- -add facts
- -remove facts
- -alter existing facts
- -alter rules
- -perform an external task
- -Inference work repetitively

- -match facts
- -perform inference
- -fire rules
- -modify facts
- -repeat
- -continues until no more productions in the agenda

4.6 Advantages of Production Systems

- -Universal computational mechanisms
- -can represent any computational process, including a production system
- -Universal function approximators
- -can approximate any function given a sufficient number of rules
- -Intuitive
- -close to how humans articulate knowledge
- -easy to get rules out of a client / user
- -Readable
- -rules are easy to read
- -Explanatory power
- -can clearly show how a conclusion was reached
- -Expressive
- -well crafted rules can cover a wide range of situations
- -few rules are needed for some problems
- -Modular
- -each rule is a separate piece of knowledge
- -rules can be easily added or deleted

4.7 Disadvantages of Production Systems

- -Handling uncertainty
- -how to deal with inexact values?
- -if a value is unknown, how to represent it?
- -concepts like tall, short, fat, thin
- -Sequential
- -one rule at a time fires
- -results can depend on which rule fires first
- -Elucidating the rules
- -how to get the rules in the first place?
- -who wants to write down 5,000 rules?
- -Completeness of the rules
- -do the rule cover every possibility?
- -what happens if they dont?

4.8 Expert Systems

- -Production systems are sometimes called expert systems
- -They are not the same thing, however
- -An expert system may use a production system, but a production system is not always in an expert system
- -These are information systems for solving a specific problem which provides an expertise similar to those of experts in the problem area.
- -An ES contains expert knowledge.
- -A typical ES architecture consists of:
- -knowledge base module;
- -working memory (database) module (for the current data);
- -inference engine
- -user interface (possibly a NLI, menu, GUI, etc)
- -explanation module
- -Knowledge Base Module
- -stores the domain knowledge
- -analogous to the production rules module of production systems
- -may be production rules
- -may be another model, such as a neural network
- -Working memory
- -same as production systems
- -Inference engine
- -controls the functioning of the entire system
- -inference mechanism can be forward or backward chaining
- -Explanation Module
- -explains the reasoning made by the system
- -describes the HOW and WHY of actions taken
- -HOW it has inferred a fact or conclusion
- -WHY it has taken the action it has

4.9 The Inference Process

- -Inference can be forward or backward chaining
- -Chaining is a line of inference / reasoning

4.9.1 Forward Chaining

- -Forward chaining
- -starts from known facts
- -fires rules to infer a conclusion
 - -Example:

the sky is clear the temperature is warm the wind is light THEREFORE the weather is good -Good for when the goal is not known by the user

4.9.2 Backward Chaining

- -Backward chaining
- -starts with a conclusion to be proven
- -fires rules that can establish that conclusion
- -Example:

The weather is good THEREFORE is the sky clear? is the temperature warm? is the wind light?

- -Goal oriented
- -Good for user interaction

4.10 Summary

- -Production systems are rule based
- -Production systems can be universal computational mechanisms and function approximators
- -Provide Readable, explainable systems
- -Dont handle uncertainty well
- -Expert systems solve problems in one domain
- -Can be based on PS, or other models
- -Encapsulate domain knowledge for use
- -Problems with acquiring domain knowledge